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The linear stability of flat Stokes layers
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The linear stability of the Stokes layer generated by an oscillating flat plate is
investigated using Floquet theory. The results obtained include the behaviour of
the growth rate of the disturbances, part of the corresponding neutral curve and
the structure of neutrally stable disturbances. Previously unknown properties of the
growth rate cause the neutral curve to have a complicated geometry: the majority of
the marginal curve is defined by waves propagating relative to the basic flow and the
curve is smooth in character, but for certain very narrow bands of wavenumbers it
was found that stationary modes are the first to become unstable. This phenomenon
has the consequence that the underlying smooth neutral curve is punctuated by thin
finger-like features. The structure of the eigenfunctions showed that the neutrally
stable disturbances tend to grow most rapidly just after the wall velocity passes
through zero.

1. Introduction
Unsteady flows occur naturally with applications ranging from engineering to

physiology. Transition to turbulence in such flows is of practical interest and there
are several papers dealing with the stability of flows composed of a steady component
plus an oscillatory component with zero temporal mean (Clamen & Minton 1977).
In such flows a possible instability mechanism can be associated with the mean
component so that the stability properties of the flow may be determined by a
perturbation-type analysis, as in Hall (1975). When the oscillatory component ceases
to be small compared to the mean, or in the special case when the temporal mean
flow is exactly zero, the above perturbation approaches fail and the theoretical results
for the stability of the flow are less definitive. Equally, the experimental information
on the stability of purely oscillatory flows is somewhat inconclusive.

In an attempt to provide more precise information on the stability of oscillatory
flows the work undertaken here re-considers the linear stability of the classical flat
Stokes layer that is generated when an infinite rigid plate oscillates in its own plane
with a velocity U0 cosωt. Above the plate is an infinite viscous fluid of kinematic
viscosity ν and the movement of the bounding surface induces a flow which has a
boundary-layer thickness δ ∼ O(

√
2ν/ω). A Reynolds number R can now be defined

as

R = U0δ/2ν = U0/
√

2νω. (1.1)

As the basic flow is 2π/ω-periodic in time, Floquet theory suggests that small
disturbances to the flow have the form exp(µ∗t)f plus its complex conjugate; here f
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is a function of the independent variables which is also 2π/ω-periodic in time and
µ∗ is the Floquet exponent. The first attempt to use this approach for the linear
stability of the classical flat Stokes layer was made by Hall (1978, hereafter referred
to as H78). His results showed no evidence of instability for R smaller than 160, as
well as intervals in R where no discrete Floquet modes could be found. (Note that
the Reynolds number used in H78 is twice that adopted here.) Earlier work by von
Kerczek & Davis (1974) had considered the related problem in which a stationary
upper boundary is placed within the fluid so the stability equations need to be solved
in a finite rather than a semi-infinite domain. In their calculations the gap between
the moving and stationary surfaces was chosen to be 8δ and no instability could be
detected for R up to roughly 400. Many of the issues that pertain to the stability of
time-periodic flows in general have been reviewed by Davis (1976) but it appears that
to date all analytical and numerical studies of the linear stability of flat Stokes layers
have only ever detected Floquet modes with the real part of µ∗ negative. For example,
Akhavan, Kamm & Shapiro (1991b) used direct numerical simulation to examine the
linear and nonlinear stability of oscillatory flow in a channel. Their linear stability
calculations were unable to find growing Floquet modes for values of R up to 500.

The main result of this paper is the prediction, based on Floquet theory, that
the classical flat Stokes layer is linearly unstable for Reynolds numbers, R, greater
than about 708. The wavelength of the most unstable disturbance is predicted to be
approximately 2πδ/0.38. Our results also show that for R above the neutral value the
growth rate of the disturbance increases almost linearly with R, at least for R up to
1000, which suggests that an inviscid instability mechanism may be present.

The comparison of the above results with existing experimental observations is
not straightforward. Our theoretical predictions apply to plane Stokes layers in an
unbounded fluid while most experiments are carried out in circular pipes, and the
majority of numerical solutions apply to spatially bounded flows. The relationship
between the linear stability of a classical flat Stokes layer and the stability of the
Stokes layer in high-frequency oscillatory flow in a channel is not clear (de Souza
1998). The gaps in the spectrum reported in H78, and confirmed in our work, do not
seem to have been found in channel flows and there are symmetric and antisymmetric
disturbance modes possible in channel flows while there are no symmetries in the
direction normal to the bounding surface for the classical Stokes layer. For the pipe
experiments, high frequencies of oscillation, or large diameter pipes, are needed just
to obtain a reasonable approximation to the plane Stokes layer. The high-frequency
experiments of Merkli & Thomann (1975) were conducted in pipes with one end
sealed, so that the spatially averaged flow is zero for all times along the length of
the pipe, a property not possessed by the classical Stokes layer under consideration
here. Other experimental variations are also possible: the pipe itself may oscillate,
corresponding to the situation described above for the classical Stokes layer (Clamen
& Minton 1977), or the oscillations in the fluid can be driven by a piston with
the pipe held stationary (Akhavan, Kamm & Shapiro 1991a; Eckmann & Grotberg
1991; Hino, Sawamoto & Takasu 1976; Merkli & Thomann 1975). While these
differences should not affect any stability predictions, they do alter the corresponding
eigenfunctions and hence how any disturbances might be described. Hino et al. (1976)
identified a number of distinct phases of flow behaviour as functions of a frequency
parameter λ = (pipe radius)/δ and their parameter Rδ (which is twice our R when λ
is large). Most of the velocity traces given by Hino et al. are at low values of λ and
hence not directly relevant to the classical Stokes layer flow. However, their results
did show that at low Rδ the flow was completely laminar and that for increasing Rδ
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disturbances which grew and then decayed within one cycle were possible. Their first
transition, from laminar to weakly disturbed, showed the disturbance growing during
the accelerating phase of the basic flow and then decaying once the velocity had
passed its maximum value. Other experiments have led to different characterizations
of the structure of the disturbances in the basic flow (Clarion & Pelissier 1975;
Akhavan et al. 1991a).

Many studies, whether theoretical, numerical or experimental in nature, have sug-
gested that disturbances in flat Stokes layers evolve in a highly non-uniform way. By
this we mean that even disturbances that experience a net decay over the course of a
complete period nevertheless often exhibit intervals of rapid amplification (and times
of correspondingly quick decay) within the cycle. This observation has prompted the
use of quasi-steady stability analysis of Stokes layer velocity profiles. The current
quasi-steady theories can be divided into two broad classes: in one, there is no a
priori asymptotic parameter and the Reynolds number is retained in the relevant
version of the Orr–Sommerfeld equation (e.g. Obremski & Morkovin 1969) while
in the other type R is taken to be asymptotically large. In the former case esti-
mates of neutral conditions may be produced while using the latter approach will
only lead to predictions of growth rates for the disturbances. Cowley (1987) used
the asymptotically large-R technique together with a combination of high-frequency
quasi-steady ideas and multiple-scales methods to demonstrate that for sufficiently
large R disturbances can grow markedly over at least part of the oscillation cycle.
This result is significant as it demonstrates that quasi-steadiness is the natural and
self-consistent consequence of R being large. Later work by Wu & Cowley (1995)
explored the weakly nonlinear development of high-frequency modes around times at
which they are instantaneously neutrally stable, though a rational quasi-steady theory
that describes disturbances through a complete cycle of the Stokes layer flow remains
elusive. Although de Souza (1998) has demonstrated that quasi-steady theory can be
a large-R asymptotic limit of Floquet theory if the mean-flow component is large
enough, his argument fails in the case of the pure Stokes layer as the mean flow is
zero.

While the quasi-steady, inviscid calculations of Cowley (1987) and de Souza (1998)
needed to take special account of any critical layers, or other modes associated with
inflection points, numerical simulations based on the governing viscous equations are
relatively free from such technicalities. In the finite-Reynolds-number computations
of von Kerczek & Davis (1974), in H78 and in other more recent calculations no
particular measures are taken to guard against the possible existence of critical
layers or inflectional instability modes. Indeed, Davis (1976) argues that at finite
Reynolds numbers the inflection points in the Stokes layer are inefficient in producing
instabilities as the basic flow is changing too quickly. At finite Reynolds number all
that is required is an accurate approximation for the velocity field. Some calculations
have been based on Galerkin or spectral methods while the work of H78 developed
a formal exact solution of the governing disturbance equations.

There is a large literature dealing with various types of oscillatory flows, with much
of the more recent theoretical work directed towards finding transition mechanisms
which do not require a linear instability. Akhavan et al. (1991b) used spectral methods
to solve the full Navier–Stokes equations and they showed that slowly decaying two-
dimensional disturbances are highly unstable to three-dimensional modes at Reynolds
numbers close to the experimentally observed transition to turbulence. Looking at
other mechanisms, Vittori & Verzicco (1998) show how the oscillatory flow close to
a flat but imperfect wall becomes turbulent. They demonstrated that disturbances
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seen in experiments are induced by imperfections in the apparatus which in turn
trigger modes which are unstable according to quasi-steady theory. When R exceeded
about 275 three-dimensionality was observed and an intermittently turbulent regime
evolved. We do not follow this path, but return to the quest for a linear instability.

The work presented here is a semi-analytical attempt to locate part of the linear-
theory neutral stability curve for the classical Stokes layer flow on an infinite flat
plate. The approach adopted is a slight reformulation of the technique used in
H78, combined with more computing power than was then available to Hall. The
results obtained include detailed information on the behaviour of the growth rate
of disturbances to the basic flow as a function of R, part of the neutral stability
curve, including a local minimum in R, and the structure of the neutrally stable
perturbations. It is worth noting here that the neutral curve, shown in figures 2 and
3 below, has some novel small-scale features. However, in § 4 we show that these
unusual properties are the natural development, as R increases, of results originally
described in H78. The remainder of this work starts with the formulation of the
problem in § 2 and is followed by a discussion of the numerical techniques in § 3. We
conclude with a description of the results and a few remarks.

2. Formulation of the numerical problem
Consider the motion induced in a semi-infinite layer of viscous fluid by a flat

plate located at y = 0 which oscillates, in its own plane, in the x-direction with
velocity U0 cosωt. If all lengths are scaled on

√
2ν/ω, velocities on U0 and the non-

dimensional time τ = ωt is introduced, then in the absence of disturbances, the basic
Stokes flow is given by

u = UB(y, τ) = e−y cos(τ− y), v = 0, (2.1)

where u and v denote the flow velocities in the x- and y-directions respectively. As
Squire’s theorem has been extended to unsteady flows (Conrad & Criminale 1965;
von Kerczek & Davis 1974) it is sufficient, for the purposes of locating the critical
Reynolds number, to study the linear stability of (2.1) by imposing a disturbance of
the form

(u, v) = (UB, 0) + ε

(
∂Ψ

∂y
,−∂Ψ

∂x

)
, (2.2)

where ε� 1 and Ψ denotes a disturbance stream function. We decompose

Ψ = eµτeiaxψ(y, τ) + complex conjugate, (2.3)

with ψ(y, τ) taken to be 2π-periodic with any exponential growth or decay of Ψ incor-
porated in µ. The associated perturbation vorticity is denoted eµτeiaxζ(y, τ) + complex
conjugate, so the governing stream function–vorticity equations, when linearized in ε,
reduces to

∂ζ

∂τ
=

1

2

(
∂2

∂y2
− a2

)
ζ − µζ − iaRUBζ + iaRUByyψ, (2.4a)

ζ =

(
∂2

∂y2
− a2

)
ψ, (2.4b)

subject to

ψ = ψy = 0 on y = 0; ψ, ζ → 0 as y →∞. (2.4c)
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In this formulation a ∈ R, µ ∈ C and the imaginary part of µ, µi, is only determined
modulo unity. Thus, for definiteness, µi was taken to lie in the range − 1

2
< µi 6

1
2
.

However, the governing equations also have the property that if µ, ζ(y, τ) is a solution,
then so is µ̃, ζ̃(y, τ + π) and hence left and right propagating waves with the same
growth rate are possible. In consequence, the range for µi could be restricted further
and it was only necessary to examine the interval 0 6 µi 6

1
2
.

The system (2.4) was analysed following the procedure given in H78. The unknowns
are decomposed into harmonics (ψ, ζ) =

∑∞
n=−∞ (ψn(y), ζn(y)) einτ, so that equating co-

efficients of the harmonics in (2.4) results in the infinite system of ordinary differential
equations(

∂2

∂y2
− a2 − 2µ− 2in

)
ζn = iaR[(ζn−1 − 2iψn−1) e−(1+i)y + (ζn+1 + 2iψn+1) e−(1−i)y],

(2.5a)(
∂2

∂y2
− a2

)
ψn = ζn. (2.5b)

As in H78 and Seminara & Hall (1976), the solution can be expressed as

ψn =

∞∑
k=−∞

{
αk

∞∑
j=0

AjknEjkn(γk) + βk

∞∑
j=0

BjknEjkn(a)

}
, (2.6)

where

γk :=
√
a2 + 2µ+ 2ik, Ejkn(·) := exp(−[·− i(k − n) + |k − n|+ 2j]y). (2.7a, b)

In addition, the Ajkn and Bjkn coefficients are scaled so that A0kk = B0kk = 1 and the
remainder then determined via recurrence relations set out below. Finally the αk and
βk are found so that the boundary conditions (2.4c) are satisfied. Provided that the
real part of γk is positive the far-field elements of conditions (2.4c) hold automatically
as the Ejkn(·) terms decay exponentially in this limit. Thus it is only the two wall
constraints that need to be imposed and these become

∞∑
k=−∞

{
αk

∞∑
j=0

Ajkn + βk

∞∑
j=0

Bjkn

}
= 0 (2.8a)

and
∞∑

k=−∞

{
αk

∞∑
j=0

Ajkn[γk − i(k − n) + |k − n|+ 2j]

+βk

∞∑
j=0

Bjkn[a− i(k − n) + |k − n|+ 2j]

}
= 0. (2.8b)

A non-trivial solution for the unknowns αk and βk is required and hence the determi-
nant of coefficients of the infinite set of equations (2.8) must vanish. This condition
leads to an eigenrelation for µ in terms of the wavenumber a and Reynolds number R.

The form of solution (2.6) for each harmonic can be interpreted as a formal power
series in the variable aR. In particular, the summations over j represent sums over
increasing powers of aR, while the summation over k comes from interactions of the
harmonics. As the equations are regular in aR these power series are convergent for
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all aR with the rate of decay of the terms in the series determining the number of
terms that need to be retained in any finite truncation of these infinite series.

The recurrence relation linking the unknowns Ajkn and Bjkn is rather complicated
(see H78) and so, as an aid to programming, several intermediate constants are
introduced. The vorticity components ζn are expressed in a form analogous to (2.6)
with the constants Ajkn and Bjkn replaced by Cjkn and Djkn respectively, so that from
(2.5b)

Cjkn = [(γk − i(k − n) + |k − n|+ 2j)2 − a2]Ajkn, (2.9a)

Djkn = [(a− i(k − n) + |k − n|+ 2j)2 − a2]Bjkn, (2.9b)

provided that µ+ ik 6= 0. If combinations of the various constants are defined by

F(j, k, n) := Cjkn − 2iAjkn, P (j, k, n) := Cijk + 2iAjkn, (2.10a, b)

G(j, k, n) := Djkn − 2iBjkn, Q(j, k, n) := Dijk + 2iBjkn (2.10c, d)

and the function φ given by

φ(j, k, n, ·) := [·− i(k − n) + |k − n|+ 2j]2 − a2 − 2µ− 2in, (2.10e)

then the substitution of the expansions for ψn and ζn in (2.5a) and a comparison of
the coefficients of Ejkn(a) and Ejkn(γk) (Ejkn(a) and Ejkn(γk) are linearly independent
provided, again, that µ + ik 6= 0) gives the required set of recurrence relations.
Explicitly they have the form:

if k 6 n− 1,

φ(j, k, n, γk)Cjkn = iaR {F(j, k, n− 1) + P (j − 1, k, n+ 1)}, (2.11a)

φ(j, k, n, a)Djkn = iaR {G(j, k, n− 1) + Q(j − 1, k, n+ 1)}; (2.11b)

if k > n+ 1,

φ(j, k, n, γk)Cjkn = iaR {F(j − 1, k, n− 1) + P (j, k, n+ 1)}, (2.11c)

φ(j, k, n, a)Djkn = iaR {G(j − 1, k, n− 1) + Q(j, k, n+ 1)
}

(2.11d)

and if k = n

φ(j, k, k, γk)Cjkk = iaR {F(j − 1, k, k − 1) + P (j − 1, k, k + 1)
}
, (2.11e)

φ(j, k, k, a)Djkk = iaR {G(j − 1, k, k − 1) + Q(j − 1, k, k + 1)
}
, (2.11f )

for j = 0, 1, 2, . . . .

3. Numerical procedures
For given values of the wavenumber a and Reynolds number R the main compu-

tational task is to find a non-trivial finite-dimensional approximate solution to the
infinite linear system (2.8). The first step then is to define a reasonable projection from
the infinite-dimensional solution space to a finite-dimensional approximation. As the
ψn are the Fourier coefficients of a smooth periodic function they tend to zero expo-
nentially as n→∞. Thus, the truncation imposed here is that ψn(y) = 0 for |n| > N+1,
which then limits k to the range −N 6 k 6 N in (2.6) and so (2.8) becomes a sys-
tem of equations for the 4N+ 2 unknown coefficients α−N, α−(N−1), . . . , αN, β−N, . . . , βN .
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The accuracy of this truncation of the Fourier series is discussed later, but we note
here that the location of the neutral modes required values of N in the range 200
to 300.

Those summations appearing in (2.8) to be taken over j were also truncated at a
finite value, J . As this sum is analogous to a convergent power series, it was evaluated
in reverse, from j = J to j = 0 in an attempt to minimize round-off error. Initially
J was set at 2N, but closer examination of the results indicated that J could be
safely lowered to 40, for the parameter range considered here, without altering the
results. The evaluation of the Ajkn and Bjkn in these sums was via the recurrence
relations (2.11). The fact that k is constant during the j-summation, coupled with the
form of the recurrence relations, allowed two-dimensional arrays to be used when
evaluating the terms in the j-summations. This resulted in a considerable saving
of computer memory, and made the project feasible given the available computing
resources.

At the larger values of N, say N > 200, it was found that the coefficient matrix in
(2.8) developed a block-banded structure. The (4N + 2)× (4N + 2) coefficient matrix
could be partitioned into four (2N + 1)× (2N + 1) submatrices, where each submatrix
had a band width of about 200. The zeros in these matrices were clearly the result
of underflow, but it suggested that the coefficient matrix could be approximated by a
block-banded matrix with even narrower bands. This idea was confirmed by several
numerical experiments and the imposition of this banded structure, using a band
width of N/2, led to a significant reduction of computer run time without any loss
of accuracy in µ.

The determinant of the above block-banded coefficient matrix was then evaluated
via an LU-factorization using routines from lapack, and an iterative method was
used to locate the zeros of the determinant as a function of µ. Several different
iteration schemes not requiring function derivatives were tried, but Muller’s method
proved to be the most efficient. A value of µ was accepted as an eigenvalue of
the system if the relative difference in successive predictions for µ was less than
10−5. This usually coincided with a decrease in the size of the determinant of about
ten to twelve orders of magnitude and was usually obtained with fewer than ten
iterations, depending on the accuracy of the initial guess for µ. As a check on the
accuracy of the imposed block banding, the determinant of the full matrix was
evaluated at the converged µ and compared with that obtained from the banded
matrix. In all cases there was excellent agreement between the two calculations of
the determinant. The corresponding eigenvector, that is the corresponding values
of α−N, α−(N−1), . . . , αN, β−N, . . . , βN , was then obtained via inverse iteration, which
simultaneously provided a check on the accuracy of the eigenvalue µ. The inverse
iteration produced an estimate of the smallest eigenvalue of the coefficient matrix
(which should be zero) and the rate of convergence to this smallest eigenvalue
showed that this ‘zero’ eigenvalue was eight to ten orders of magnitude smaller
than the other eigenvalues of the coefficient matrix. Having found the eigenvector,
the disturbance flow field and associated quantities were then reconstructed. Finally
we note that it was necessary to use 128-bit arithmetic to obtain the results for
the neutral curve. For values of R up to 400, 64-bit arithmetic worked well, but
as the number of harmonics increased, round-off error began to contaminate the
evaluation of the determinant of the coefficient matrix, making it difficult to locate
its zero. Nevertheless, the results with 64-bit arithmetic at R = 700 agreed with
those obtained using 128-bits but the convergence was much slower with the smaller
word-length.
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4. Results and discussion

Our main results are summarized in figures 1–4 below: these figures show the
behaviour of µ as a function of R for fixed a and illustrate the structure of the neutral
curve.† The variation of the imaginary part of µ with R, at the fixed wavenumber
a = 0.3, for R up to about 200 is given in figure 1(a). These results have the same
character as those presented in H78, where it was shown that there are intervals of R
where solutions exist which alternate with regions across which no solutions decaying
at infinity appear to be possible. At the edges of these intervals µi → 0 and γ0 is purely
imaginary, as a2 + 2µr < 0, and the solution is only bounded at infinity. To simplify
the discussion below, we call the Reynolds number interval between successive bands
of solutions with µi 6= 0 an S-gap. Thus, as R increases, our results indicate that
the length of each S-gap decreases and, simultaneously, the heights of the peaks in
figure 1(a) tend to grow towards the value of 0.5. When µi 6= 0 discrete eigenvalues
correspond to travelling wave disturbances, and as will be shown below, the S-gap
will eventually contain standing wave modes.

The behaviour of the real part of µ, µr , corresponding to the values of R and a used
for figure 1(a), is depicted in figure 1(b). As R increases from zero the disturbances
become increasingly more stable although around R = 80 this trend shows signs
of being arrested. (In H78 equivalent results for a wavenumber a = 0.15 indicate
that no such levelling off has properly set in by the time R = 160.) Moreover,
within each solution strip, ∂µr/∂R is negative. As well as having the same qualitative
features as those in H78 our results also agreed quantitatively, at least to graphical
accuracy. The procedures adopted in this paper enabled us to take the calculations
to much higher R than was possible in H78 and some qualitative changes then begin
to appear. First, for R of the order of a few hundred, the growth rates tend to
become less negative although at this stage ∂µr/∂R is still negative on any solution
strip and the gap between strips persists. However, once R reaches about 600, ∂µr/∂R
becomes positive over part of the strip until eventually the growth rate is a monotonic
increasing function of R, provided that µi 6= 0. Continuing to increase R eventually
makes µr > 0, but we have not shown this on figure 1(b) as there is a subtle change
in the solution structure for µr very close to zero, and this would not be seen on the
scale of this figure.

For a = 0.3 our results suggest that the disturbance becomes neutrally stable,
with µr = 0 and µi 6= 0, at R ≈ 780. But, more importantly, this means that there
is a range of Reynolds numbers just below this neutral point where a2 + 2µr is
positive, and this has dramatic effects on the nature of the solutions in the S-gaps
just below any such neutral points. (With a = 0.3, the relevant range of R is from
approximately 772 to 780.) The behaviour of the eigensolutions at infinity is dictated
by that of the E000(γ0) term in (2.6). At the edges of the S-gaps µi → 0, but now,
with a2 + 2µr > 0, solutions with the real part of γ0 negative (see (2.7a)) are possible,
and hence an eigenfunction decaying at infinity exists for µi = 0, i.e. for standing
wave modes. Thus, as found in H78, the S-gaps at Reynolds numbers well below
neutral conditions contain a continuous spectrum of standing wave modes which do
not decay (spatially) at infinity, as γ0 is purely imaginary, while in the S-gaps just

† Recently we have examined the linear stability properties of unsteady flow in wide channels
using a fully numerical method to determine µ from the governing equations (2.4) with UB given
by the basic oscillatory flow in a channel. The results for µ in the case of a wide channel confirm in
detail the results presented in figure 1 of this paper. We intend to present the details of our channel
flow stability calculations in a future article.
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Figure 1. (a) Variation of µi with Reynolds number R for modes of wavenumber a = 0.3.
(b) Dependence of µr upon R. (c) An example of the behaviour of µ in the vicinity of a region
where µi = 0. Here a = 0.25 and 929.525 < R < 929.7; the behaviour of µr is designated by � and
µi by +.

below neutral conditions there are discrete, standing wave disturbances which decay
with increasing distance from the oscillating plate. Further, as indicated below, these
discrete standing wave modes emerge from the coalescence of left and right travelling
wave perturbations as the phase speed of the travelling waves drops to zero as the
Reynolds number is varied, and the edge of an S-gap is approached.

Explicit detail of the above structure is shown in figure 1(c), and to demonstrate
that the behaviour is generic, results for a wavenumber of a = 0.25 and Reynolds
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Figure 2. Smoothed form of the linear neutral stability curve obtained by interpolation through
the neutral points (aj , RN(aj)) where aj+1 − aj = 0.01.

numbers around 929.6 are presented. The results in figure 1(c) show that µi is zero on
the S-gap 929.525 < R < 929.7, and that µi is non-zero on either side of this interval.
Note that where µ is complex, only the eigenvalues with µi > 0 have been plotted
in figure 1(c); the µ̃ eigenvalues have been omitted so the behaviour of growth rate,
µr , can be seen more easily. The end points of these intervals clearly correspond
to a coalescence of the left and right travelling wave modes, i.e. a coalescence of
complex conjugate eigenvalues, and while µr is now a continuous function of R it
must have square-root behaviour at the end points of the µi = 0 interval. (Note that
the square-root singularity in µ at the ends of the S-gap is masked by the linear
interpolation of regularly spaced data points.) However the most remarkable feature
of the disturbance in this interval is that the two standing wave solutions, coming
from the collision of the complex conjugate eigenvalues, have significantly different
growth rates, and that one of the modes is actually unstable on part of this S-gap.
At the upper end of this interval the standing wave modes are again both stable
and they combine to give stable travelling waves modes as R is increased past the
right-hand end of the S-gap. Although not shown in the figure 1(c), these travelling
waves eventually become unstable when R = 930.8. At this wavenumber, the results
obtained indicate that the disturbance does not restabilize as R is increased above
930.8. The occurrence of these regions of unstable stationary modes just below the
bulk of the unstable region of parameter space made the precise determination of the
neutral curve a difficult process.

The portion of the ‘neutral curve’ found so far is shown in figure 2. This curve was
obtained by interpolation through neutral points (aj, RN(aj)) where aj+1−aj = 0.01. A
minimum appears to be located at a wavenumber of 0.38 with a Reynolds number of
about 708; the corresponding µi is 0.15. However, due to the behaviour of the growth
rate of the stationary modes, discussed above, this curve is only correct to graphical
accuracy; at best this curve defines sufficient conditions for the Stokes layer to be
unstable. The precise neutral curve can only be determined by a close examination of
the intersection of the region around this curve and the strips where µi = 0. Figure 3
shows in detail the structure of the neutral curve around a = 0.38. The almost vertical
‘spikes’ correspond to neutrally stable stationary modes while µi 6= 0 on the more
gently sloped parts of the curve. These ‘spikes’ or fingers are in fact smooth, as their
lower tip is formed when the upper section of the growth rate curve (for µi = 0) has
its maximum at µr = 0. As the width of the intervals where µi = 0 is very small,
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Figure 3. Detailed form of the neutral curve in the range 0.368 6 a 6 0.385. The curve is constructed
by interpolation between the marked points and shows that in this range the critical disturbance is
stationary with a = ac = 0.3746 and R = Rc = 707.84.
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Figure 4. The variation of growth rate µr as a function of Reynolds number R for modes with
wavenumber a = 0.3 (solid line), a = 0.38 (dashed line) and a = 0.45 (chain line).

these fingers will appear sharp when plotted at the scale of figure 3. Figure 3 also
shows that the most unstable disturbance is a stationary mode, with Rc = 707.84 and
ac = 0.3746. Further calculations indicated that around the minimum of the smoothed
neutral curve (figure 2) the separation of these fingers was about ∆a ≈ 0.006, and
hence these spikes occur very regularly. At smaller values of a there is a region where
the neutral curve appears to be parallel to the strips of stationary disturbances, and
hence there are no fingers off the smoothed curve for this range of wavenumber.

The behaviour of the growth rate, µr , for values of R greater than RN(a) is shown in
figure 4. For the three different wavenumbers shown, µr increases almost linearly with
increasing R. The numerical results for these Reynolds numbers also showed that
the dominant harmonics in the wall vorticity moved further away from n = 0 as R
increased. Allowing for the normalizing condition that 0 6 µi < 0.5, these results then
suggest that µi could also be interpreted as increasing linearly with R, and hence that
µ ∼ µ0R for large enough Reynolds numbers. This hypothesis fits naturally with the
quasi-steady analysis of Cowley (1987), but as yet there is no asymptotic prediction
for µ0 which could be compared with our numerical estimates. We also note that
the maximum growth rate is near a ≈ 0.38 from our calculations and that this is in
reasonable agreement with the results of Cowley (1987).
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Figure 5. Dependence of the magnitude of the wall vorticity component |ζn(0)| upon n for three
representative calculations. The innermost curve corresponds to the parameter choices a = 0.3,
R = 300; the solid-line result to a = 0.27 and R = 858 and the outermost profile to a = 0.47 and
R = 843. Note that in this last case the eventual exponential decay has barely set in even when as
many as N = 280 harmonics are retained in the computation.

The numerical reliability of these results is best discussed with reference to figure 5,
where the distribution of the magnitudes of the wall vorticity components |ζn(0)|
versus the harmonic number n for three different calculations is shown. The general
shape of these curves is typical of all the results obtained here: the decay of |ζn(0)|
with n is initially quite small but at a certain point there is a sudden change and the
decay rate accelerates noticeably. Experiments with different truncations, i.e. varying
N, of the underlying Fourier series showed that it was essential to include sufficient
harmonics in the region of rapid decay of the harmonics in order to guarantee
that µ was independent of N. Usually 20 to 30 harmonics in the region of rapid
exponential decay of ζn were enough to ensure reliable results for µ. The innermost
curve on figure 5, for a = 0.3 and R = 300 shows that a calculation retaining 100
harmonics is easily enough to capture the characteristics of the solution. At the
wavenumber/Reynolds number combination a = 0.27 and R = 858, on the left-hand
branch of the neutral curve in figure 2, the distribution of |ζn(0)| widens considerably,
but a reliable solution is still possible for N = 200. However, at roughly the same R,
but now on the right-hand branch, it is observed that the location of the main kink
in the curve has moved out to roughly n = 260 and thus reliable convergence was
just possible within our computational constraints. This illustrates why we were only
able to obtain solutions on the right-hand side of figure 2 for values of R just past
critical. Further, in the region above the neutral curve, reliable results were achieved
provided that N was increased in direct proportion to the increase in aR.

Some indication of the effect of the truncation level N is shown quantitatively in
table 1. These results, for a = 0.3 and R = 800, mimic those in H78 and suggest
that under-resolving the disturbance tends to lead to an over-estimate for µr . (Notice
also that these results confirm that travelling wave modes do become unstable.) It
should be anticipated that the convergence in N will be exponential as we are using
a spectral method to approximate a periodic function. At numerous stages in our
studies calculations akin to those summarized in table 1 were carried out for other
values of a and R. In all cases similar behaviours were observed and further tests
were conducted in relation to the other truncation parameters: the upper limit J of
the j-sums in (2.8) and the bandwidth used in the approximation of the boundary



Stability of flat Stokes layers 405

N µ

120 (0.684436, 0.574752)
160 (0.119778, 0.367956)
200 (0.081745, 0.350957)
220 (0.081745, 0.350957)
240 (0.081745, 0.350957)

Table 1. Variation of the predicted value of µ as a function of the truncation N. This calculation
relates to wavenumber a = 0.3, Reynolds number R = 800, parameter J = 40 and the matrix
bandwidth set as 201.
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Figure 6. Contours of the real part of the disturbance stream function over a period 0 6 τ 6 2π
and the range 0 6 y 6 4π. The forms illustrated correspond to the neutral modes at wavenumbers
(a) a = 0.2, (b) a = 0.22, (c) a = 0.38 and (d ) a = 0.44. The interval between successive contours is
250 and the solution has been normalized as described beneath equation (2.7). The zero contour is
indicated by the dotted line while positive and negative values of the stream function are designated
by dashed and chain lines respectively.

condition matrix. Typical of the results is that for (a, R) = (0.3, 750) and sufficient
Fourier resolution (N > 160), three significant figures in the value of µ could be
obtained for J and bandwidth as small as 20 and 41 respectively.

The structure of ψr , the real part of ψ(y, τ), for neutral modes with µi > 0 at
wavenumbers of 0.2, 0.22, 0.38 and 0.44 is shown as contour plots of constant
ψr(y, τ) in figure 6. The corresponding values of µi are 0.165, 0.494, 0.147 and 0.0527
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respectively. (The imaginary part of ψ is very similar to the real part and so is not
shown.) We note here that for the corresponding solutions with µi < 0 the time axis
is simply advanced by π in the plots of ψr . We also remark that despite the fact that
these contour plots are based on a (2N + 1) × (4N + 1) uniformly gridded data set,
the zero contour near the wall y = 0 may occasionally be in error. This was observed
when two different contouring routines were used on the same data. However, the
differences were small and do not affect the features of the flow discussed below.

To begin we note that all four plots share two obvious common features. The
first is the result that the maximum stream function occurs close to the edge of the
Stokes layer. Given that the basic flow has effectively decayed to zero around y = 2π,
these neutrally stable disturbances extend a significant distance into the region where
the basic flow velocity is zero. This structure cannot be completely ascribed to the
relatively small values of wavenumber under consideration as a more than doubles
from figure 6(a) to 6(d ) while the main features of the flow move only fractionally
closer to the wall. The other common feature is that the disturbance seems to
evolve from a source within the Stokes layer, near y = π/2 say, which generates a
high-frequency oscillation which initially grows in size and propagates along lines
τ − y = constant. As the disturbance grows and moves further from the wall, the
frequency of the oscillation slowly decreases, and then the size of the disturbance also
begins to decrease. A less obvious feature of these results is that there appear to be
two different y values, at a common τ, at which the disturbance has its minimum
amplitude. This is best seen in figure 6(d ), where for τ ≈ 3π/2, the disturbance seems
to grow simultaneously from near y = π/2 and from a region very close to the wall.
The large values of ψr are associated with the source point off the wall, while the
regions of negative slope of the ψr = 0 contour seem to come from the source point
near the wall. A plot of the real part of the vorticity field confirmed that there are
two regions of high vorticity, of the same sign, propagating away from the wall along
two different lines of constant τ−y, with these patches of vorticity gradually merging,
and then weakening, as the disturbance moves away from the wall.

The main difference between the four stream function plots appears to be the time
at which the disturbance begins its growth phase. For a = 0.2 and 0.44 (µi = 0.165
and 0.0527), the disturbance begins to increase in size at about τ ≈ 3π/2; for a = 0.38
(µi = 0.147) the disturbance grows from τ ≈ π/2 while for a = 0.22 (µi = 0.494)
it appears that the disturbance grows from both π/2 and 3π/2. However all the
above observations can be broadly summarized by noting that the velocity of the
bounding plate is zero at τ = π/2 and 3π/2, leading to the general statement that
the disturbance begins to grow around the time when the wall velocity is zero. Closer
examination of figure 6(c) suggests that even though the biggest disturbance grows
from τ ≈ π/2, there is still some weak perturbation commencing around τ ≈ 3π/2;
equally, figures 6(a) and 6(d ) show weak disturbance growth from τ ≈ π/2 with the
main growth beginning around τ ≈ 3π/2. The extreme case is when there is equal
growth from both instants when the wall velocity is zero, and this is approximately
illustrated in figure 6(b) where µi = 0.494, which is close to 0.5. As noted earlier,
changing the sign of µi simply activates the symmetry ψ(y, τ) = ψ̃(y, τ+ π). But when
µi = 0.5 the two neutral solutions corresponding to µ = ±0.5 are identical, as the
Floquet exponents differ by an integer, and hence ψr must have period π, meaning
that at both instants of zero wall velocity the disturbance growth is the same. Thus
for µi close to 0.5 it would be expected that the disturbance should have a structure
similar to that for µi = 0.5, as is confirmed by figure 6(b). Finally we note that
ψi(y, τ) = −ψi(y, τ+ π) when µi = 0.5.
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Figure 7. Contours of the real part of the disturbance stream function over a period 0 6 τ 6 2π
and the range 0 6 y 6 4π corresponding to the stationary critical mode R = Rc = 707.84,
a = ac = 0.3746. The line types are as in figure 6 with the interval between successive contours now
500.
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Figure 8. Contours of the real part of the disturbance stream function over a period 0 6 τ 6 2π
and the range 0 6 y 6 4π corresponding to the unstable mode R = 847.5, a = 0.38. The line types
are as in figure 6 with the interval between successive contours now 750.

Contours of the real part of the stream function at critical conditions, ac = 0.3746,
Rc = 707.84 and µ = 0 are shown in figure 7. As both the cases µi = 0.5 and µi = 0
have the same symmetry properties, figure 6(b) and figure 7 are quite similar but in
this latter case the π periodicity in ψr is much more accurate. In common with the
travelling wave modes, this synchronous disturbance extends well outside the Stokes
layer with the main difference between the two types of modes being the strength
of the perturbation. All solutions were normalized so that the mean component of
vorticity ζ0 is unity at the wall y = 0, but the stream function values for the standing
wave solutions are about three times those for the travelling wave modes.

Finally, the contours of the real part of the stream function for the unstable mode
with a = 0.38 at R = 847.5 are shown in figure 8. Here µ = (0.675937, 0.148056)
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and the overall features of the structure of this unstable mode are similar to those
of the neutral modes: the disturbance begins to grow near the time of zero wall
velocity; the frequency of the disturbance decreases as it moves away from the wall
and the maximum stream function occurs towards the edge of the Stokes layer. The
obvious difference between the structure shown at this higher Reynolds number and
the structure of the neutrally stable modes is the much increased local frequency of
the disturbance. This increase in frequency is consistent with the suggestion above
that µ ∼ µ0R as the Reynolds number increases.

5. Comparison with experimental results and final remarks
From the above discussion of the neutral curve it is clear that any attempt at an

experimental determination of critical conditions for the flow above an oscillating flat
plate will be rather difficult. While it may be possible to define the critical Reynolds
number, the observed structure will be very complicated, as at a Reynolds number
0.1% above critical there are at least three distinct bands of unstable, interacting
wavenumbers. Experimentally it may be easier to consider a flow which is oscillating
sinusoidally at infinity with the bounding surface stationary, i.e. UB → UB − cos τ. In
this case the transformation ζ → exp(iaR sin τ)ζ, with a corresponding change in ψ,
leaves (2.4) unchanged and so the stability conditions for these two basic flows are the
same even though the eigenfunctions will be different. There appear to be only a few
experimental investigations into the flow considered here (for example Li 1954), with
several other experiments in pipes approximating the semi-infinite Stokes layer. All
the experiments summarized by Hino et al. (1976) report a critical Reynolds number
lower than our result with a value of R ≈ 275 typical of that quoted. Akhavan et al.
(1991a, b) also give similar values for the critical Reynolds number.

One possible explanation for the above differences is that while we have identified a
linear neutral curve with an apparent minimum point there could be another smaller
minimum elsewhere in parameter space. In further calculations we have explored a
more extensive region and, in particular, investigated wavenumbers as large as a = 2.5.
However it was found that for given R the growth rate µr decreases very rapidly with
increasing a which suggests that other neutral modes at Reynolds numbers smaller
than those given in figure 3 are unlikely, at least for moderate wavenumbers.

Other possible reasons for the disagreement between our theoretical results and the
recorded experimental results may be the effects of finite geometry in the practical
apparatus, difficulties in producing an accurate oscillatory flow (as mentioned by
Eckmann & Grotberg 1991) or it may be that the instability in the Stokes layer flow
is sub-critical. This latter mechanism appears to be unlikely in view of the numerical
simulations described by Akhavan et al. (1991b). Their calculations were performed
in the range R 6 500, which is in the region where we predict decaying Floquet
modes, and it was shown that the decay rate of small disturbances was larger in full
Navier–Stokes simulations than in the runs using linearized equations. A more likely
explanation for the disagreement between experiments and the predictions of this
work relies on the widely reported observation that the size of the disturbance can
vary considerably during one cycle of the basic flow. A global and a local measure
of the variation in disturbance size is given below. In figure 9 the magnitude of
the enstrophy, |∫ ∞

0
ζ(y, τ)2 dy|, is plotted as a function of τ for R = 255, 500 and

approximately 709 with a = 0.38. At the largest Reynolds number, which corresponds
to neutral conditions for this wavenumber, the maximum magnitude of the enstrophy
is about one thousand times the minimum enstrophy, with the variation less at smaller
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Figure 9. Variation of the magnitude of enstrophy |∫ ∞
0
ζ(y, τ)2 dy | for wavenumber a = 0.38.

The solid, dashed and chain lines correspond to R = 255, 500 and 709 respectively.
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Figure 10. Variation of the magnitude of wall vorticity |ζ(0, τ)| for wavenumber a = 0.38.
The solid, dashed and chain lines correspond to R = 255, 500 and 709 respectively.

Reynolds numbers. Although not shown, for R ≈ 709 the real and imaginary parts of
the enstrophy oscillate with the same frequency as suggested by the stream function
contours in figure 6(c). While indicating that there is significant variation in the size
of the disturbance through the cycle, this global measure of the disturbance is not
sensitive to local effects in the flow. For comparison, figure 10 shows the magnitude
of the wall vorticity, |ζ(0, τ)|, for the same conditions as in figure 9. At R = 255, which
is close to the experimental transition Reynolds numbers for bounded flows, the wall
vorticity varies by a factor of 10 during one cycle. With R = 500 the maximum wall
vorticity is 40 times the minimum, while at neutral conditions the ratio of maximum
to minimum wall vorticity is about 200. Thus, allowing for a maximum disturbance
amplitude of 2% at critical conditions, the background noise in the wall vorticity
would need to be less than 0.01% in order for the predicted linear stability to be
observed experimentally. These stringent conditions contrast markedly with noise
levels of around 2% to 4% reported by Eckmann & Grotberg (1991).

While the linear-theory critical Reynolds number for the instability of flat Stokes
layers presented here does not agree with the existing experimental results, the
calculated growth rates for the unstable modes do indicate possibilities for further
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analytical work. Our limited range of results suggest that for increasing Reynolds
numbers a solution with µ ∼ µ0R + . . . may be possible. This hypothesis would lead
to, at leading order, an essentially inviscid quasi-steady analysis where critical layer
behaviour would be important, and a formal asymptotic calculation as R →∞ would
then be required.

We are indebted to the referees whose comments led to an improved version of this
work. This investigation was conducted while A. P. B. was on study leave at UNSW.
He is indebted to the Royal Society of London and the Australian Research Council
without whose grants his visit would not have been possible. In addition, he is grateful
to the staff and students of New College UNSW and the School of Mathematics for
their hospitality.
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